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w=c(i+1)-d(i)

h=xa(i+m)-x h will never be zero, since this was tested in the ini-
t=(xa(i)-x)*d(i)/h tializing loop.
dd=t-c(i+1)

if(dd.eq.0.)pause ’failure in ratint’
This error condition indicates that the interpolating function has a pole at the re-
quested value of x.
dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd
enddo 12
if (2*ns.lt.n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
endif
y=y+dy
enddo 13
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function y; = y(z;), ¢ = 1...N, focus attention on one
particular interval, between z; and x ;4. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + Byjn (33.1)
where
A= Tt TT g TTT (33.2)
Tj41 — Xy Lj+1 — Ty

Equations (3.3.1) and (3.3.2) are aspecial case of the general Lagrangeinterpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas z;. Thegoal of cubic splineinterpolation isto get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y;, we
also have tabulated values for the function's second derivatives, 3", that is, a set
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108 Chapter 3.  Interpolation and Extrapolation

of numbers y.’. Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
valuey;/ ontheleft to avaluey/, ; ontheright. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at =; and x;1, then adding it in will not spoil the agreement with the
tabulated functional values y; and ;. at the endpointsx; and 1.

A little side calculation shows that there is only one way to arrange this
congtruction, namely replacing (3.3.1) by

y = Ay; + Byj1 + Cyj + Dyj,, (3.3.3)
where A and B are defined in (3.3.2) and
1 1
C= €(A3 — A)(l‘j.i_l - $j)2 D= 6(33 — B)(Cﬂj+1 — .”L'j)2 (334)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear z-dependence of A and B, and (through A and
B) the cubic z-dependence of C' and D.

We can readily check that 3" is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect to z,
using the definitionsof A, B, C, D to computedA/dx,dB/dx,dC/dx, and dD/dzx.
The result is

dy  yj1—vy; 3A2-1 3B% -1
== (@1 = 25)y5 + —F—

1 — i)y 3.35
dz w41 — 7 6 (Tj+1 x])y]+l( )

for the first derivative, and

d?y _

dz?
for the second derivative. Since A =1 at z;, A = 0 a x;4;, while B is just the
other way around, (3.3.6) shows that " isjust the tabulated second derivative, and
also that the second derivativewill be continuous across (e.g.) the boundary between
the two intervals (ij_l,l'j) and (l'j, $j+1).

The only problem now isthat we supposed the y /"’ sto be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y!'.

The required equations are obtained by setting equation (3.3.5) evaluated for
x = z; intheinterval (x;_1, z;) equal to the same equation evaluated for z = x ; but
intheinterval (x;, z;41). Withsomerearrangement, thisgives(forj = 2,..., N—1)

Ayj + Byj., (3.3.6)

Tj— Tj_1 Tjp1 — Tj—1 Tjy1 — T Yitel — Y5 Yj— Yj—1
(I et W j g=1 J g j j i —Yi
6 * 3 it 6 Vi1 =

Tj+1 — Ty Tj— Tj—1

(337)

These are N — 2 linear equationsin the N unknownsy.,i = 1,..., N. Therefore
there is a two-parameter family of possible solutions.

For aunigue solution, we need to specify two further conditions, typically taken
asboundary conditionsat x; and z ;. Themost commonways of doing thisareeither
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3.3 Cubic Spline Interpolation 109

e set one or both of 1" and y; equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

o set either of Y and yx; to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical isthat the set of equations
(3.3.7), dlong with the two additional boundary conditions, are not only linear, but
asotridiagonal. Eachy’ iscoupledonly toitsnearest neighborsat j + 1. Therefore,
the equations can be solved in O(N') operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
SO We encourage you to study it carefully, comparing with tridag (§2.4).

SUBROUTINE spline(x,y,n,ypl,ypn,y2)

INTEGER n,NMAX

REAL ypi,ypn,x(n),y(n),y2(n)

PARAMETER (NMAX=500)
Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., y, = f(x;), with
X1 < X2 < ... < Xp, and given values ypl and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points x;. If yp1 and/or ypn are equal to 1 x 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k

REAL p,qn,sig,un,u(NMAX)

if (ypl.gt..99e30) then The lower boundary condition is set either to be
y2(1)=0. “natural”
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./x(2)-x(1)))*((y(2)-y (1)) / (x(2)-x(1) ) -yp1)

endif

dou i=2,n-1 This is the decomposition loop of the tridiagonal
sig=(x(1)-x(i-1))/(x(i+1)-x(i-1)) algorithm. y2 and u are used for temporary
p=sigxy2(i-1)+2. storage of the decomposed factors.

y2(i)=(sig-1.)/p
u(i)=(6.*((y(E+D) -y (1)) / (x(GE+D)-x (1)) -(y (D) -y (i-1))
/(x(1)-x(i-1)))/(x(i+1)-x(i-1))-sigxu(i-1))/p

enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
qn=0. “natural”
un=0.

else or else to have a specified first derivative.
qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn-(y(n) -y (n-1)) / (x(n) -x(n-1)))

endif

y2(n)=(un-gn*u(n-1))/(qn*y2(n-1)+1.)

do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-
y2(k)=y2 (k) *y2 (k+1)+u(k) nal algorithm.

enddo 12

return

END

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays x; and y;. Once this has been done,
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110 Chapter 3. Interpolation and Extrapolation

values of the interpolated function for any value of = are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)

INTEGER n

REAL x,y,xa(n),y2a(n),ya(n)
Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xa;'s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo

REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.
khi=n This is optimal if sequential calls to this routine are at random
if (khi-klo.gt.1) then values of x. If sequential calls are in order, and closely
k=(khi+klo)/2 spaced, one would do better to store previous values of
if (xa(k).gt.x)then klo and khi and test if they remain appropriate on the
khi=k next call.
else
klo=k
endif
goto 1
endif klo and khi now bracket the input value of x.

h=xa(khi)-xa(klo)

if (h.eq.0.) pause ’bad xa input in splint’ The xa's must be distinct.

a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.

b=(x-xa(klo))/h

y=axya(klo)+b*ya(khi)+
((a**3-a)*y2a(klo)+(b**3-b)*xy2a(khi))* (h**2) /6.

return

END
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§2.4,
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3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated x;'s and f;’s. Then you will need a fast way of finding your place
in the table of x;'s, given some particular value x at which the function evaluation
isdesired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problemisthis: Givenan array of abscissasxx(j), j=1,2,... n,
with the elements either monotonically increasing or monotonically decreasing, and
given anumber x, find an integer j such that x liesbetween xx (j) andxx (j+1). For
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